If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-60x+12=0
a = 3; b = -60; c = +12;
Δ = b2-4ac
Δ = -602-4·3·12
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-24\sqrt{6}}{2*3}=\frac{60-24\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+24\sqrt{6}}{2*3}=\frac{60+24\sqrt{6}}{6} $
| h+12=35 | | -63y+136=10 | | 100+15+0.55x=35+0.65x | | -7d+2d+-11d-4d=20 | | -4(4)+3y=24 | | 24=h/18-16(-14) | | 3/x-3/7=6x | | 2y-6+2(3y+7)=-2(y+5) | | 9+1/5b=3/10b= | | 6(x-9)-6x=1=6x+217 | | x-2x=-14 | | 10.1=m/8 | | 8u-u+4u-2u+u=20 | | 5b-7=3b+29 | | 24=h/(-18)(-16)(-14) | | 9.8x^2-19x+5=0 | | 2/3*n=18 | | 4u-u-u=10 | | 20-21x^2+25x-4=0 | | 36/60=x+2/36 | | 2X+11/30=x/12 | | 9(88-x)=13x | | 3/x-7=6x | | x−8=24 | | 0.7x-5=0.38x+3 | | 10*n=-22 | | 2x-3=9^2 | | (3x-8/16)=(2x=4/22) | | 8+2(7u-1)=-2(2u-6)+6u | | 1/3(x-6)=2/3x-7 | | 0.6x-2=0.8x+3 | | 7(x-2)+15=24 |